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1. Fluid Flow in Pipes 
 

We will be looking here at the flow of real fluid in pipes – real meaning a fluid that looses energy due to 
friction as it interacts with the pipe wall as it flows. 

 

Recall from Level 1 that the shear stress induced in a fluid flowing near a boundary is given by Newton's 
law of viscosity: 

τ ∝
du
dy

 

This tells us that the shear stress, τ, in a fluid is proportional to the velocity gradient - the rate of change 
of velocity across the fluid path. For a “Newtonian” fluid we can write: 

τ µ=
du
dy

 

where the constant of proportionality, µ, is known as the coefficient of viscosity (or simply viscosity).  

 

Recall also that flow can be classified into one of two types,  laminar or turbulent flow (with a small 
transitional region between these two). The non-dimensional number, the Reynolds number, Re, is used 
to determine which type of flow occurs: 

Re =
ρ

µ
ud

 

 

Laminar flow:    Re < 2000 

Transitional flow: 2000 < Re < 4000 

Turbulent flow:  Re > 4000 

 

It is important to determine the flow type as this governs how the amount of energy lost to friction relates 
to the speed of the flow. And hence how much energy must be used to move the fluid. 

1.1 Pressure loss due to friction in a pipeline. 
 

Consider a cylindrical element of incompressible fluid flowing in the pipe, as shown 

 
Figure 1: Element of fluid in a pipe 
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The pressure at the upstream end, 1, is p, and at the downstream end, 2, the pressure has fallen by ∆p to 
(p-∆p). 

The driving force due to pressure (F = Pressure x Area) can then be written 

driving force = Pressure force at 1  - pressure force at 2 

( )pA p p A p A p
d

− − = =∆ ∆ ∆
π 2

4
 

The retarding force is that due to the shear stress by the walls 
= ×

×
shear stress  area over which it acts

= area of pipe wall
=

w

w

τ
τ πdL

 

As the flow is in equilibrium,  

driving force = retarding force 

∆

∆

p
d

dL

p
L

d

w

w

π
τ π

τ

2

4
4

=

=
 

Equation 1 

Giving an expression for pressure loss in a pipe in terms of the pipe diameter and the shear stress at the 
wall on the pipe. 

The shear stress will vary with velocity of flow and hence with Re. Many experiments have been done 
with various fluids measuring the pressure loss at various Reynolds numbers. These results plotted to 
show a graph of the relationship between pressure loss and Re look similar to the figure below: 

 

 

Figure 2: Relationship between velocity and pressure loss in pipes 

 

CIVE 2400: Fluid Mechanics  Pipe Flow 3



This graph shows that the relationship between pressure loss and Re can be expressed as 

   
laminar
turbulent or  

∆

∆

p u
p u

∝

∝ 1 7 2 0. ( . )

As these are empirical relationships, they help in determining the pressure loss but not in finding the 
magnitude of the shear stress at the wall τw on a particular fluid. If we knew τw we could then use it to 
give a general equation to predict the pressure loss. 

1.2 Pressure loss during laminar flow in a pipe 
In general the shear stress τw. is almost impossible to measure. But for laminar flow it is possible to 
calculate a theoretical value for a given velocity, fluid and pipe dimension. (As this was covered in he 
Level 1 module, only the result is presented here.) The pressure loss in a pipe with laminar flow is given 
by the Hagen-Poiseuille equation: 

2

32
d

Lup µ
=∆  

or in terms of head 

2

32
gd

Luh f ρ
µ

=  

Equation 2 

Where hf  is known as the head-loss due to friction 
 

1.3 Pressure loss during turbulent flow in a pipe 
 

In this derivation we will consider a general bounded flow - fluid flowing in a channel - we will then 
apply this to pipe flow. In general it is most common in engineering to have Re > 2000 i.e. turbulent flow 
– in both closed (pipes and ducts) and open (rivers and channels). However analytical expressions are not 
available so empirical relationships are required (those derived from experimental measurements). 

Consider the element of fluid, shown in figure 3 below, flowing in a channel, it has length L and with 
wetted perimeter P. The flow is steady and uniform so that acceleration is zero and the flow area at 
sections 1 and 2 is equal to A. 

 

 
Figure 3: Element of fluid in a channel flowing with uniform flow 
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0sin21 =+−− θτ WLPApAp w  

writing the weight term as gALρ  and sin θ = −∆z/L gives 

( ) 021 =∆−−− zgALPppA w ρτ  

this can be rearranged to give 

( )[ ]
021 =−

∆−−
A
P

L
zgpp

oτ
ρ  

where the first term represents the piezometric head loss of the length L or (writing piezometric head p*) 

dx
dpmo

*

=τ  

Equation 3 

where m = A/P is known as the hydraulic mean depth 

Writing piezometric head loss as p* = ρghf, then shear stress per unit length is expressed as 

L
gh

m
dx

dpm f
o

ρ
τ ==

*

 

So we now have a relationship of shear stress at the wall to the rate of change in piezometric pressure. To 
make use of this equation an empirical factor must be introduced. This is usually in the form of a friction 
factor f, and written 

2

2ufo
ρτ =  

where u is the mean flow velocity. 

Hence 

L
gh

m
uf

dx
dp fρρ

==
2

2*

 

So, for a general bounded flow, head loss due to friction can be written 

m
fLuh f 2

2

=  

Equation 4 

More specifically, for a circular pipe, m = A/P = πd2/4πd = d/4 giving 

 

gd
fLuh f 2

4 2

=  

Equation 5 

This is known as the Darcy-Weisbach equation for head loss in circular pipes 

(Often referred to as the Darcy equation) 

This equation is equivalent to the Hagen-Poiseuille equation for laminar flow with the exception of the 
empirical friction factor f introduced. 

It is sometimes useful to write the Daryc equation in terms of discharge Q, (using Q = Au) 
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2
4
d
Qu

π
=  

5

2

52

2

03.32
64

d
fLQ

dg
fLQhf ==
π

 

Equation 6 

Or with a 1% error 

5

2

3d
fLQhf =  

Equation 7 

 

NOTE On Friction Factor Value 

The f  value shown above is different to that used in American practice. Their relationship is 

f American = 4 f 
 

Sometimes the f is replaced by the Greek letter λ. where 

λ = f American = 4 f 
 

Consequently great care must be taken when choosing the value of f with attention taken to the source of 
that value. 

 

1.4 Choice of friction factor f 
 

The value of f must be chosen with care or else the head loss will not be correct. Assessment of the 
physics governing the value of friction in a fluid has led to the following relationships 

1. hf  ∝ L 

2. hf  ∝ v2 

3. hf  ∝ 1/d 
4. hf depends on surface roughness of pipes 

5. hf depends on fluid density and viscosity 

6. hf is independent of pressure 

Consequently f cannot be a constant if it is to give correct head loss values from the Darcy equation. An 
expression that gives f based on fluid properties and the flow conditions is required. 
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1.4.1 The value of f for Laminar flow 
 
As mentioned above the equation derived for head loss in turbulent flow is equivalent to that derived for 
laminar flow – the only difference being the empirical f. Equation the two equations for head loss allows 
us to derive an expression of f that allows the Darcy equation to be applied to laminar flow. 
 
Equating the Hagen-Poiseuille and Darcy-Weisbach equations gives: 
 

Re
16

16
2

432 2

2

=

=

=

f

vd
f

gd
fLu

gd
Lu

ρ
µ

ρ
µ

 

Equation 8 

1.4.2 Blasius equation for f 
 
Blasius, in 1913, was the first to give an accurate empirical expression for f  for turbulent flow in smooth 
pipes, that is: 

25.0Re
079.0

=f  

Equation 9 
 
This expression is fairly accurate, giving head losses +/- 5% of actual values for Re up to 100000. 
 
 

1.4.3 Nikuradse  
 
Nikuradse made a great contribution to the theory of pipe flow by differentiating between rough and 
smooth pipes.  A rough pipe is one where the mean height of roughness is greater than the thickness of 
the laminar sub-layer. Nikuradse artificially roughened pipe by coating them with sand. He defined a 
relative roughness  value ks/d (mean height of roughness over pipe diameter) and produced graphs of f 
against Re for a range of relative roughness 1/30 to 1/1014.  

 

 
Figure 4: Regions on plot of Nikurades’s data 
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A number of distinct regions can be identified on the diagram.  
 

 
The regions which can be identified are: 
 

1. Laminar flow (f = 16/Re) 
2. Transition from laminar to turbulent 

A unstable region between Re = 2000 and 4000. Pipe flow normally lies outside this region 
3. Smooth turbulent 

The limiting line of turbulent flow. All value of relative roughness tend toward this as Re 
decreases. 

4. Transitional turbulent 
The region which f varies with both Re and relative roughness. Most pipes lie in this region. 

5. Rough turbulent. f  remains constant for a given relative roughness. It is independent of Re. 
 

1.4.4 Colebrook-White equation for f 
 
Colebrook and White did a large number of experiments on commercial pipes and they also brought 
together some important theoretical work by von Karman and Prandtl. This work resulted in an equation 
attributed to them as the Colebrook-White equation: 
 











+−=

fd
k

f
s

Re
26.1

71.3
log41

10  

Equation 10 
 

It is applicable to the whole of the turbulent region for commercial pipes and uses an effective roughness 
value (ks) obtained experimentally for all commercial pipes. 
 
Note a particular difficulty with this equation. f  appears on both sides in a square root term and so cannot 
be calculated easily. Trial and error methods must be used to get f once ks¸Re and d are known. (In the 
1940s when calculations were done by slide rule this was a time consuming task.) Nowadays it is 
relatively trivial to solve the equation on a programmable calculator of spreadsheet. 
 
Moody made a useful contribution to help, he potted f against Re for commercial pipes – see the figure 
below. This figure has become known as the Moody Diagram 
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Figure 5: Moody Diagram. 

 
He also produced an equation based on the Colebrook-White equation that made it simpler to calculate  f: 
 




















++=

3/16

Re
10200

1001375.0
d

k
f s  

Equation 11 
 

This equation of Moody gives f correct to +/- 5% for 4 × 103 < Re < 1 × 107 and for ks/d < 0.01. 
 
Barr presented an alternative explicit equation for f in 1975 
 





 +−= 89.010 Re

1286.5
71.3

log41
d

k
f

s  

Equation 12 
or 

2

89.010 Re
1286.5

71.3
log41 














 +−=

d
kf s  

Equation 13 
 
Here the last term of the Colebrook-White equation has been replaced with 5.1286/Re0.89 which provides 
more accurate results for Re > 105. 
 
The problem with these formulas still remains that these contain a dependence on ks. What value of ks 
should be used for any particular pipe? Fortunately pipe manufactures provide values and typical values 
can often be taken similar to those in table 1 below. 
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Pipe Material ks 

(mm) 
Brass, copper, glass, Perspex 0.003 
Asbestos cement 0.03 
Wrought iron 0.06 
Galvanised iron 0.15 
Plastic 0.03 
Bitumen-lined ductile iron 0.03 
Spun concrete lined ductile 
iron 

0.03 

Slimed concrete sewer 6.0 
 

Table 1: Typical ks values 
  

1.5 Local Head Losses 
 
In addition to head loss due to friction there are always head losses in pipe lines due to bends, junctions, 
valves etc. (See notes from Level 1,  Section 4 - Real Fluids for a discussion of energy losses in flowing 
fluids.)  For completeness of analysis these should be taken into account. In practice, in long pipe lines of 
several kilometres their effect may be negligible for short pipeline the losses may be greater than those 
for friction. 
 
A general theory for local losses is not possible, however rough turbulent flow is usually assumed which 
gives the simple formula 

g
ukh LL 2

2

=  

Equation 14 
Where hL is the local head loss and kL is a constant for a particular fitting (valve or junction etc.) 
 
For the cases of sudden contraction (e.g. flowing out of a tank into a pipe) of a sudden enlargement (e.g. 
flowing from a pipe into a tank) then a theoretical value of kL can be derived. For junctions bend etc. kL 
must be obtained experimentally. 
 

1.5.1 Losses at Sudden Enlargement 
 
Considerthe flow in the sudden enlargement, shown in figure 6 below, fluid flows from section 1 to 
section 2. The velocity must reduce and so the pressure increases (as follows from Bernoulli). At position 
1' turbulent eddies occur which give rise to the local head loss. 

 
Figure 6: Sudden Expansion 
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Apply the momentum equation between positions 1 and 2 to give: 
 

( )122211 uuQApAp −=− ρ  
 
Now use the continuity equation to remove Q. (i.e. substitute Q = A2u2) 

 
( )12222211 uuuAApAp −=− ρ  

Rearranging gives 

( )21
212 uu

g
u

g
pp

−=
−

ρ
 

Equation 17 
 
Now apply the Bernoulli equation from point 1 to 2, with the head loss term hL 
 

Lh
g

u
g

p
g

u
g

p
++=+

22

2
22

2
11

ρρ
 

And rearranging gives  

g
pp

g
uuhL ρ

12
2
2

2
1

2
−

−
−

=  

Equation 18 
Combining Equations 17 and 18 gives 

( )

( )
g
uuh

uu
g
u

g
uuh

L

L

2

2
2

21

21
2

2
2

2
1

−
=

−−
−

=

 

Equation 19 
Substituting again for the continuity equation to get an expression involving the two areas, (i.e. 
u2=u1A1/A2) gives 
 

g
u

A
AhL 2

1
2
1

2

2

1








−=  

Equation 20 
Comparing this with Equation 14 gives kL 
 

2

2

11 







−=

A
AkL  

Equation 21 
 
When a pipe expands in to a large tank A1 << A2 i.e. A1/A2 = 0 so kL = 1. That is, the head loss is equal to 
the velocity head just before the expansion into the tank. 
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1.5.2 Losses at Sudden Contraction 
 

 
Figure 7: Sudden Contraction 

 
In a sudden contraction, flow contracts from point 1 to point 1', forming a vena contraction. From 
experiment it has been shown that this contraction is about 40% (i.e. A1' = 0.6 A2). It is possible to 
assume that energy losses from 1 to 1' are negligible (no separation occurs in contracting flow) but that 
major losses occur between 1' and 2 as the flow expands again. In this case Equation 16 can be used from 
point 1' to 2 to give: (using, by continuity u1 = A2u2/A1 = A2u2/0.6A2 = u2/0.6) 

( )
g

u
A

AhL 2
6.0/6.01

2
2

2

2

2








−=  

 

g
uhL 2

44.0
2
2=  

Equation 22 
i.e. At a sudden contraction kL = 0.44. 

1.5.3 Other Local Losses 
 
Large losses in energy in energy usually occur only where flow expands. The mechanism at work in these 
situations is that as velocity decreases (by continuity) so pressure must increase (by Bernoulli).  
 
When the pressure increases in the direction of fluid outside the boundary layer has enough momentum to 
overcome this pressure that is trying to push it backwards. The fluid within the boundary layer has so 
little momentum that it will very quickly be brought to rest, and possibly reversed in direction. If this 
reversal occurs it lifts the boundary layer away from the surface as shown in Figure 8. This phenomenon 
is known as  boundary layer separation. 
 

 
Figure 8: Boundary layer separation 
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At the edge of the separated boundary layer, where the velocities change direction, a line of vortices 
occur (known as a vortex sheet). This happens because fluid to either side is moving in the opposite 
direction. This boundary layer separation and increase in the turbulence because of the vortices results in 
very large energy losses in the flow. These separating / divergent flows are inherently unstable and far 
more energy is lost than in parallel or convergent flow. 

Some common situation where significant head losses occur in pipe are shown in figure 9 
 

A divergent duct or diffuser 
  

Tee-Junctions 

 
Y-Junctions 

 
Bends 

Figure 9: Local losses in pipe flow 
 

The values of kL for these common situations are shown in Table 2. It gives both the theoretical value and 
that used in practice.  
 

 kL value 
 Theory Practic

e 
Bellmouth entry 0.05 0.10 
Sharp entry 0.44 0.5 
Sharp exit 0.2 0.5 
90° bend 0.4 0.4 
90° tees  
 In-line flow 0.35 0.4 
 Branch to line 1.2 1.5 
 Gate value 
(open) 

0.12 0.25 

 
Table 2: kL values 
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1.6 Pipeline Analysis 
To analyses the flow in a pipe line we will use Bernoulli’s equation. The Bernoulli equation was 
introduced in the Level 1 module, and as a reminder it is presented again here. 

Bernoulli’s equation is a statement of conservation of energy along a streamline, by this principle the 
total energy in the system does not change, Thus the total head does not change. So the Bernoulli 
equation can be written 

constant
2

2

==++ Hz
g

u
g
p

ρ
 

or 

Pressure 
energy per
unit weight

Kinetic
energy per
unit weight

Potential
energy  per
unit weight

Total
energy per
unit weight

+ + =  

As all of these elements of the equation have units of length, they are often referred to as the following: 

 pressure head = 
p
gρ

 

 velocity head = 
u

g

2

2
 

 potential head =  z
 total head = H  

 

Bernoulli’s equation has some restrictions in its applicability, they are: 

• Flow is steady; 

• Density is constant (i.e. fluid is incompressible); 

• Friction losses are negligible.  

• The equation relates the states at two points along a single streamline. 
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1.7 Pressure Head, Velocity Head, Potential Head and Total Head in a Pipeline. 
By looking at the example of the reservoir with which feeds a pipe we will see how these different heads 
relate to each other. 

Consider the reservoir below feeding a pipe that changes diameter and rises (in reality it may have to pass 
over a hill) before falling to its final level. 

������
������
������
������
������
������
������

���
���
���
���
���
���
���
���

 
Figure 10: Reservoir feeding a pipe  

To analyses the flow in the pipe we apply the Bernoulli equation along a streamline from point 1 on the 
surface of the reservoir to point 2 at the outlet nozzle of the pipe. And we know that the total energy per 
unit weight or the total head does not change - it is constant - along a streamline. But what is this value 
of this constant? We have the Bernoulli equation 

p
g

u
g

z H
p
g

u
g

z1 1
2

1
2 2

2

22 2ρ ρ
+ + = = + +  

We can calculate the total head, H, at the reservoir, p1 0=  as this is atmospheric and atmospheric gauge 
pressure is zero, the surface is moving very slowly compared to that in the pipe so u , so all we are 
left with is  the elevation of the reservoir. 

1 0=
total head H z= = 1

A useful method of analysing the flow is to show the pressures graphically on the same diagram as the 
pipe and reservoir. In the figure above the total head line is shown. If we attached piezometers at points 
along the pipe, what would be their levels when the pipe nozzle was closed? (Piezometers, as you will 
remember, are simply open ended vertical tubes filled with the same liquid whose pressure they are 
measuring). 

������
������
������
������
������
������

���
���
���
���
���
���
���
���

������
������

Total head lin e

pressur e
head

elevatio n

H

 
Figure 11: Piezometer levels with zero velocity 

As you can see in the above figure, with zero velocity all of the levels in the piezometers are equal and 
the same as the total head line. At each point on the line, when u = 0 
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p
g

z H
ρ

+ =  

The level in the piezometer is the pressure head and its value is given by 
p
gρ

. 

What would happen to the levels in the piezometers (pressure heads) if the if water was flowing with 
velocity = u? We know from earlier examples that as velocity increases so pressure falls … 

Total head lin evelocit y
head

������

pressur e
head

elevatio n

H

hydraulic  
grade lin e

������
������
������
������
������
������
������

���
���
���
���
���
���
���

 
������Figure 12: Piezometer levels when fluid is flowing 

p
g

u
g

z H
ρ

+ + =
2

2
 

We see in this figure that the levels have reduced by an amount equal to the velocity head, 
u

g

2

2
. Now as 

the pipe is of constant diameter we know that the velocity is constant along the pipe so the velocity head 
is constant and represented graphically by the horizontal line shown. (this line is known as the hydraulic 
grade line). 

What would happen if the pipe were not of constant diameter? Look at the figure below where the pipe 
from the example above is replaced by a pipe of three sections with the middle section of larger diameter 

������
������
������
������
������
������
������

���
���
���
���
���
���
���
���

������

pressur e
head

elevatio n

H

hydraulic  
grade lin e

Total head lin evelocit y
head

 
������Figure 13: Piezometer levels and velocity heads with fluid flowing in varying diameter pipes 

The velocity head at each point is now different. This is because the velocity is different at each point. By 
considering continuity we know that the velocity is different because the diameter of the pipe is different. 
Which pipe has the greatest diameter? 
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Pipe 2, because the velocity, and hence the velocity head, is the smallest. 

This graphical representation has the advantage that we can see at a glance the pressures in the system. 
For example, where along the whole line is the lowest pressure head? It is where the hydraulic grade line 
is nearest to the pipe elevation i.e. at the highest point of the pipe.  

1.8 Flow in pipes with losses due to friction. 
In a real pipe line there are energy losses due to friction - these must be taken into account as they can be 
very significant. How would the pressure and hydraulic grade lines change with friction? Going back to 
the constant diameter pipe, we would have a pressure situation like this shown below 

Total head lin evelocit y
head

�����

pressur e
head

elevatio n

H − hf

hydraulic  
grade lin e

������
������
������
������
������
������
������

���
���
���
���
���
���
���

 
�����Figure 14: Hydraulic Grade line and Total head lines for a constant diameter pipe with friction 

How can the total head be changing? We have said that the total head - or total energy per unit weight - is 
constant. We are considering energy conservation, so if we allow for an amount of energy to be lost due 
to friction the total head will change. Equation  19 is the Bernoulli equation as applied to a pipe line with 
the energy loss due to friction written as a head and given the symbol  (the head loss due to friction) 
and the local energy losses written as a head, h

hf

L (the local head loss). 

Lf hhz
g

u
g

pz
g

u
g

p
++++=++ 2

2
22

1

2
11

22 ρρ
 

Equation 23 
 

1.9 Reservoir and Pipe Example 
 
Consider the example of a reservoir feeding a pipe, as shown in figure 15.  

 

 
Figure 15: Reservoir feeding a pipe 
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The pipe diameter is 100mm and has length 15m and feeds directly into the atmosphere at point C 4m 
below the surface of the reservoir (i.e. za – zc = 4.0m). The highest point on the pipe is a B which is 1.5m 
above the surface of the reservoir (i.e. zb – za = 1.5m) and 5 m along the pipe measured from the 
reservoir. Assume the entrance and exit to the pipe to be sharp and the value of friction factor f to be 0.08. 
Calculate a) velocity of water leaving the pipe at point C, b) pressure in the pipe at point B. 
 
a) 
We use the Bernoulli equation with appropriate losses from point A to C 

and for entry loss  kL = 0.5 and exit loss kL = 1.0. 
 
For the local losses from Table 2 for a sharp entry kL = 0.5 and for the sharp exit as it opens in to the 
atmosphere with no contraction there are no losses, so 
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Substitute in the numbers from the question 
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b) 
To find the pressure at B apply Bernoulli from point A to B using the velocity calculated above. The 
length of the pipe is L1 = 5m: 
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That is 28.58 kN/m2 below atmospheric.  

1.10 Pipes in series 
When pipes of different diameters are connected end to end to form a pipe line, they are said to be in 
series. The total loss of energy (or head) will be the sum of the losses in each pipe plus local losses at 
connections. 
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1.10.1 Pipes in Series Example 
Consider the two reservoirs shown in figure 16, connected by a single pipe that changes diameter over its 
length. The surfaces of the two reservoirs have a difference in level of 9m. The pipe has a diameter of 
200mm for the first 15m (from A to C) then a diameter of 250mm for the remaining 45m (from C to B). 
 

 
Figure 16: 

For the entrance use kL  = 0.5 and the exit kL  = 1.0. The join at C is sudden. For both pipes use f = 0.01. 
 
Total head loss for the system H = height difference of reservoirs  
 
hf1 = head loss for 200mm diameter section of pipe 
hf2 = head loss for 250mm diameter section of pipe 
hL entry = head loss at entry point 
hL join = head loss at join of the two pipes 
hL exit = head loss at exit point 
 
 
So  

H = hf1 + hf2 + hL entry  + hL join + hL exit  = 9m 
 

All losses are, in terms of Q: 
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Substitute these into  
hf1 + hf2 + hL entry  + hL join + hL exit  = 9 

 
and solve for Q, to give Q = 0.158 m3/s 

CIVE 2400: Fluid Mechanics  Pipe Flow 19



1.11 Pipes in parallel 
 
When two or more pipes in parallel connect two reservoirs, as shown in Figure 17, for example, then the 
fluid may flow down any of the available pipes at possible different rates. But the head difference over 
each pipe will always be the same. The total volume flow rate will be the sum of the flow in each pipe.  
 
The analysis can be carried out by simply treating each pipe individually and summing flow rates at the 
end. 
 

 
Figure 17: Pipes in Parallel 

1.11.1 Pipes in Parallel Example 
 
Two pipes connect two reservoirs (A and B) which have a height difference of 10m. Pipe 1 has diameter 
50mm and length 100m. Pipe 2 has diameter 100mm and length 100m. Both have entry loss  kL = 0.5 and 
exit loss kL=1.0 and Darcy f of 0.008. 
Calculate:  

a) rate of flow for each pipe 
b) the diameter D of a pipe 100m long that could replace the two pipes and provide the same 

flow. 
 
a) 
Apply Bernoulli to each pipe separately. For pipe 1: 
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pA and pB are atmospheric, and as the reservoir surface move s slowly uA and uB are negligible, so 

smu

u

g
u

d
flzz BA

/731.1
81.9205.0

100008.040.110

2
0.145.0

1

2
1

2
1

1

=
×







 ××

+=









++=−

 

 
And flow rate is given by 
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For pipe 2: 
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Again pA and pB are atmospheric, and as the reservoir surface move s slowly uA and uB are negligible, so 
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And flow rate is given by 
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b) Replacing the pipe, we need Q = Q1 + Q2 = 0.0034 + 0.0190 = 0.0224 m3/s 
 
For this pipe, diameter D, velocity u , and making the same assumptions about entry/exit losses, we have: 
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The velocity can be obtained from Q i.e. 
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which must be solved iteratively 
 

An approximate answer can be obtained by dropping the second term: 
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Writing the function 
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So increase D slightly, try 0.107m 
022.0)107.0( =f  

 
i.e. the solution is between 0.107m and 0.1058m but 0.107 if sufficiently accurate. 
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1.12 Branched pipes 
If pipes connect three reservoirs, as shown in Figure 17, then the problem becomes more complex. One of 
the problems is that it is sometimes difficult to decide which direction fluid will flow. In practice 
solutions are now done by computer techniques that can determine flow direction, however it is useful to 
examine the techniques necessary to solve this problem. 
 

 
A 

D

B 

C 

 
 

Figure 17: The three reservoir problem 
 

1.12.1 Example of Branched Pipe – The Three Reservoir Problem 
 
Water flows from reservoir A through pipe 1, diameter d1 = 200mm, length L1=120m, to junction D from 
which the two pipes leave, pipe 2, diameter d2=75mm, length L2=60m goes to reservoir B, and pipe 3, 
diameter d3=60mm, length L3=40m goes to reservoir C. Reservoir B is 16m below reservoir A, and 
reservoir C is 24m below reservoir A. All pipes have  f = 0.01.  (Ignore and entry and exit losses.) 
 
In this case the flow will be from reservoir A to junction D then from D to reservoirs B and C. There are 
three unknowns u1, u2 and u3 the three equation we need to solve are obtained from A to B then A to C 
and from continuity at the junction D. 
 
 
Flow from A to B 
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Putting pA = pB and taking uA and uB as negligible, gives 
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Put in the numbers from the question 
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         (equation i) 
 
Flow from A to C 
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Putting pA = pc and taking uA and uc as negligible, gives 
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Put in the numbers from the question 
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         (equation ii) 
Fro continuity at the junction 

Flow A to D = Flow D to B + Flow D to C 
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with numbers from the question 
025.03906.0 321 =−− uuu  

         (equation iii) 
 
the values of u1, u2 and u3 must be found by solving the simultaneous equation i, ii and iii. The technique 
to do this is to substitute for equations i, and ii in to equation iii, then solve this expression. It is usually 
done by a trial and error approach. 
i.e. from i, 
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from ii,  
2
13 5.1657.17 uu −=  

substituted in iii gives 
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This table shows some trial and error solutions 

u f(u) 
1 -1.14769
2 0.289789

1.8 -0.03176
1.85 0.046606
1.83 0.015107
1.82 -0.00057

Giving u1 = 1.82 m/s, so u2 = 2.38 m/s, u3 = 12.69 m/s 
Flow rates are 
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Check for continuity at the junction 
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